Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Barium divanadium(V) tellurite(IV)

Ju-Ying Hou, ${ }^{\text {a }}$ Chang-Cang Huang, ${ }^{\text {a* }}$ Han-Hui Zhang, ${ }^{\text {a,b }}$ Qi-Yu Yang, ${ }^{\text {a }}$ Yi-Ping Chen ${ }^{\text {a }}$ and Jian-Fu Xu ${ }^{\text {a }}$

Abstract

${ }^{\text {a }}$ Department of Chemistry and Key Laboratory of Chemistry of Solid Materials, Fuzhou University, Fuzhou, Fujian 350002, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China Correspondence e-mail: cchuang@fzu.edu.cn

Received 4 March 2005
Accepted 11 April 2005
Online 13 May 2005
A new three-dimensional bimetallic tellurite, $\mathrm{BaV}_{2} \mathrm{TeO}_{8}$, was synthesized by the hydrothermal reaction of $\mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{TeO}_{2}$ and $\mathrm{V}_{2} \mathrm{O}_{5}$, and characterized by single-crystal X-ray diffraction. The three-dimensional framework is built up from anionic $\left[\mathrm{V}_{2} \mathrm{TeO}_{8}\right]_{n}^{2 n-}$ layers parallel to (101) and connected via $\mathrm{Ba}-\mathrm{O}$ bonds. The anionic layers are formed by three types of polyhedra, namely VO_{5} tetragonal pyramids, VO_{4} tetrahedra and TeO_{4+2} 'folded square' polyhedra.

Comment

Both vanadium and tellurium exhibit a variety of coordination geometries, such as the VO_{4} tetrahedron, the VO_{6} octahedron, the VO_{5} square pyramid, the TeO_{3} trigonal pyramid, the TeO_{4} folded square and the TeO_{5} square pyramid, which lead to the rich structural chemistry of vanadium tellurites. A series of compounds have been obtained, such as $\mathrm{Te}_{2} \mathrm{~V}_{2} \mathrm{O}_{9}$ (Darriet \& Galy, 1973), TeVO_{4} (Meunier et al., 1972), TeVO_{4} (Meunier et al., 1973), NaVTeO_{5} (Darriet et al., 1972), KVTeO_{5} (Darriet et al., 1972), $\mathrm{Cs}\left(\mathrm{VO}_{2}\right)_{3}\left(\mathrm{TeO}_{3}\right)_{2}$ (Harrison \& Buttery, 2000), $M($ phen $) \mathrm{V}_{2} \mathrm{TeO}_{8}(M=\mathrm{Cu}$ and Ni , and phen $=$ phenanthroline; Xiao, Li et al., 2003) and $\mathrm{V}_{4} \mathrm{Te}_{4} \mathrm{O}_{18}$ (Xiao, Wang et al., 2003). Thus, the preparation of novel vanadium tellurites continues to be an intriguing endeavor.

Recently, the hydrothermal method has found increased application in the syntheses of a variety of inorganic oxide materials, such as metal phosphates (Soghomonian et al., 1995), phosphonates (Bonavia et al., 1996) and selenites (Vaughey et al., 1994). The metastable materials thus prepared possess novel low-dimensional or three-dimensional framework structures. We have attempted to introduce the hydrothermal method into the synthesis of vanadium tellurites, in order to obtain compounds with novel structures. In this paper, we report the crystal structure of the new vanadium tellurite $\mathrm{BaV}_{2} \mathrm{TeO}_{8}$.

There are two crystallographically independent V atoms, one Te atom and one Ba atom in this structure (Fig. 1). Atom V1 exhibits a distorted tetrahedral coordination geometry,

Figure 1
The coordination environments of the V, Te and Ba atoms, showing the atom-labeling scheme and 50% probability displacement ellipsoids.
with two terminal O atoms $(\mathrm{O} 1$ and O 2$)$, and two $\mu_{2}-\mathrm{O}$ atoms (O 3 and O 4) linked to Te atoms. The $\mathrm{V} 1-\mathrm{O}$ bond lengths are in the range 1.651 (3) -1.833 (3) \AA, and the $\mathrm{O}-\mathrm{V} 1-\mathrm{O}$ angles range from 107.46 (14) to $111.51(14)^{\circ}$. Atom V2 has squarepyramidal coordination, with two terminal O atoms (O 5 and O 6), one $\mu_{2}-\mathrm{O}$ atom (O 8) shared with Te , and two $\mu_{3}-\mathrm{O}$ atoms [O7 and O7 ${ }^{\text {vi }}$; symmetry codes: (vi) $-x-1,-y+1,-z+1$] linked with Te and $\mathrm{V} 2{ }^{\text {vi }}$. The $\mathrm{V} 2-\mathrm{O}$ bond lengths are in the range 1.645 (3) -1.990 (3) \AA, and the $\mathrm{O}-\mathrm{V} 2-\mathrm{O}$ angles range from 77.55 (11) to $143.55(15)^{\circ}$. The Te atom has a folded square coordination geometry, with three $\mu_{2}-\mathrm{O}$ atoms (O3, O4 and O8), two of which are shared with V1 atoms and the third bridging atoms Te and V 2 , and one $\mu_{3}-\mathrm{O}$ atom (O7) shared with V2 and V2 ${ }^{\text {vi }}$. This geometry can be rationalized simply in valence-shell electron-pair repulsion (VSEPR) theory as an $A X_{4} E$ trigonal bipyramid, with the lone pair of electrons occupying an equatorial position. The $\mathrm{Te}-\mathrm{O}$ bond lengths range from 1.891 (3) to 2.125 (3) \AA, and the two axial bonds are longer than the two equatorial bonds. The $\mathrm{O}-\mathrm{Te}-\mathrm{O}$ angles are in the range $73.77(11)-152.78(11)^{\circ}$. Moreover,

Figure 2
Infinite $\left[\mathrm{V} 1 \mathrm{~V} 2 \mathrm{TeO}_{8}\right]_{n}^{2 n-}$ layers parallel to (101). The light lines represent weak $\mathrm{Te}-\mathrm{O}$ interactions.
there are two long $\mathrm{Te}-\mathrm{O}$ contacts, namely $\mathrm{Te}-\mathrm{O} 2^{\mathrm{ii}}$ [2.942 (3) \AA] and $\mathrm{Te}-\mathrm{O6}^{\text {vii }}$ [2.644 (3) Å] (Table 1). The overall shape of this TeO_{4+2} group approximates to a distorted octahedron. The Ba atom adopts a nine-coordination mode.

The title compound exhibits a three-dimensional framework. The framework contains two-dimensional [V1V2$\left.\mathrm{TeO}_{8}\right]_{n}^{2 n-}$ folded anionic layers (Fig. 2) formed by VO_{5} square pyramids, VO_{4} tetrahedra and TeO_{4} polyhedra, which share corners and edges, with Ba atoms located between the layers. The TeO_{4} polyhedra and VO_{4} tetrahedra share corners to form an infinite $\left[\mathrm{V} 1 \mathrm{TeO}_{6}\right]_{n}$ chain parallel to the b axis. Two $\mathrm{V}_{2} \mathrm{O}_{5}$ square pyramids share an edge to form a $\mathrm{V}_{2} \mathrm{O}_{8}$ moiety. The $\mathrm{V}_{2} \mathrm{O}_{8}$ moieties connect two $\left[{\left.\mathrm{V} 1 \mathrm{TeO}_{6}\right]_{n}}\right.$ chains into a complex $\left[\mathrm{V} 1 \mathrm{~V} 2 \mathrm{TeO}_{8}\right]_{n}^{2 n-}$ band by sharing an edge with neighboring TeO_{4} groups. Taking the weak $\mathrm{Te}-\mathrm{O}$ interaction into account, neighboring [V1V2TeO $]_{n}^{2 n-}$ infinite bands combine with each other to form [$\left.\mathrm{V} 1 \mathrm{~V} 2 \mathrm{TeO}_{8}\right]_{n}^{2 n-}$ infinite layers parallel to (101). Successive layers are linked by $\mathrm{Ba}-\mathrm{O}$ interactions into a three-dimensional framework.

Experimental

A mixture of $\mathrm{V}_{2} \mathrm{O}_{5}(0.0455 \mathrm{~g}), \mathrm{TeO}_{2}(0.795 \mathrm{~g}), \mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (0.0947 g) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ was sealed in a 23 ml Teflon-lined stainless steel autoclave. The $\mathrm{Ba} / \mathrm{V} / \mathrm{Te} / \mathrm{H}_{2} \mathrm{O}$ molar ratio was $3: 5: 5: 278$. The mixture was heated at 473 K for five days and then cooled to room temperature. Bright-yellow block-shaped crystals of the title compound were obtained, washed with distilled water and dried at room temperature.

Crystal data

$\mathrm{BaV}_{2} \mathrm{TeO}_{8}$
$M_{r}=494.82$
Monoclinic, $P 2_{1} / n$
$a=9.6380(8) \AA$
$b=5.6665(3) \AA$
$c=13.8866(11) \AA$
$\beta=107.642(4)^{\circ} \AA^{\circ}$
$V=722.73(9) \AA^{3}$
$Z=4$

Data collection

Rigaku Weissenberg IP
\quad diffractometer
φ scans
Absorption correction: multi-scan
\quad (TEXRAY; Molecular Structure
\quad Corporation, 1999)
$T_{\min }=0.13, T_{\max }=0.55$
1663 measured reflections
Refinement

$$
\begin{aligned}
& D_{x}=4.548 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=12-18^{\circ} \\
& \mu=11.88 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.30 \times 0.15 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

1663 independent reflections
1538 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 12$
$k=0 \rightarrow 7$
$l=-18 \rightarrow 17$

$$
\begin{aligned}
& \begin{aligned}
w= & 1 /[
\end{aligned} \sigma^{2}\left(F_{o}^{2}\right)+(0.0236 P)^{2} \\
& \quad \\
& \quad+1.1787 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.79 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-1.00 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.0112(3)
\end{aligned}
$$

Table 1
Selected interatomic distances (\AA).

$\mathrm{Ba} 1-\mathrm{O} 8^{\text {i }}$	2.701 (3)	$\mathrm{Te} 1-\mathrm{O} 7^{\text {vi }}$	2.125 (3)
$\mathrm{Ba} 1-\mathrm{O}{ }^{\text {ii }}$	2.791 (3)	$\mathrm{Te} 1-\mathrm{O}^{\text {vii }}$	2.644 (3)
$\mathrm{Ba} 1-\mathrm{O} 6^{\text {iii }}$	2.802 (3)	$\mathrm{Te} 1-\mathrm{O} 2^{\text {ii }}$	2.942 (3)
$\mathrm{Ba} 1-\mathrm{O} 5^{\text {iv }}$	2.838 (3)	V1-O1	1.651 (3)
$\mathrm{Ba} 1-\mathrm{O}{ }^{\text {iii }}$	2.900 (3)	$\mathrm{V} 1-\mathrm{O} 2$	1.651 (3)
$\mathrm{Ba} 1-\mathrm{O}^{\text {iv }}$	2.914 (3)	V1-O3	1.785 (3)
$\mathrm{Ba} 1-\mathrm{O} 1$	2.954 (3)	V1-O4	1.833 (3)
$\mathrm{Ba} 1-\mathrm{O} 1^{v}$	3.014 (3)	V2-O5	1.645 (3)
Ba1-O4	3.090 (3)	V2-O6	1.652 (3)
Te1-O8	1.891 (3)	V2-O7	1.894 (3)
Te1-O4	1.943 (3)	V2-O8	1.956 (3)
$\mathrm{Te} 1-\mathrm{O}{ }^{\text {v }}$	2.017 (3)	$\mathrm{V} 2-\mathrm{O} 7^{\text {vi }}$	1.990 (3)

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x-\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (iv) $-x,-y+1,-z+1$; (v) $x, y-1, z$; (vi) $-x-1,-y+1,-z+1$; (vii) $-x-1$, $-y,-z+1$.

Space group $P 2_{1} / n$ was established from the systematic absences.
Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97-2 (Sheldrick, 1997).

We are grateful for financial support from the National Natural Science Foundation of China (grant Nos. 20431010 and 20171012), the Department of Science and Technology of China (grant No. 2004BA310A35-4-1), and the Natural Science Foundation of Fujian Province (grant No. K02028).

[^0]
References

Bonavia, G., Haushalter, R. C., O’Connor, C. J. \& Zubieta, J. (1996). Inorg. Chem. 35, 5603-5612.
Darriet, J. \& Galy, J. (1973). Cryst. Struct. Commun. 2, 237-238.
Darriet, J., Guillaume, G., Wilhelmi, K. A. \& Galy, J. (1972). Acta Chem. Scand. 26, 59-70.
Harrison, W. T. A. \& Buttery, J. H. N. (2000). Z. Anorg. Allg. Chem. 626, 867870.

McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Meunier, G., Darriet, J. \& Galy, J. (1972). J. Solid State Chem. 5, 314-320.
Meunier, G., Darriet, J. \& Galy, J. (1973). J. Solid State Chem. 6, 67-74.
Molecular Structure Corporation (1999). TEXSAN (Version 1.10) and TEXRAY. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97, SHELXS97 and SHELXL97-2. University of Göttingen, Germany.
Soghomonian, V., Chen, Q., Zhang, Y., Haushalter, R. C., O'Connor, C. J., Tao, C. \& Zubieta, J. (1995). Inorg. Chem. 34, 3509-3519.

Vaughey, J. T., Harrison, W. T. A., Dussack, L. L. \& Jacobson, A. J. (1994). Inorg. Chem. 33, 4370-4375.
Xiao, D. R., Li, Y. G., Wang, E. B., Wang, S. T., Hou, Y., De, G. J. H. \& Hu, C. W. (2003). Inorg. Chem. 42, 7652-7657.

Xiao, D. R., Wang, S. T., Wang, E. B., Hou, Y., Li, Y. G., Hu, C. W. \& Xu, L. (2003). J. Solid State Chem. 176, 159-164.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA1130). Services for accessing these data are described at the back of the journal.

